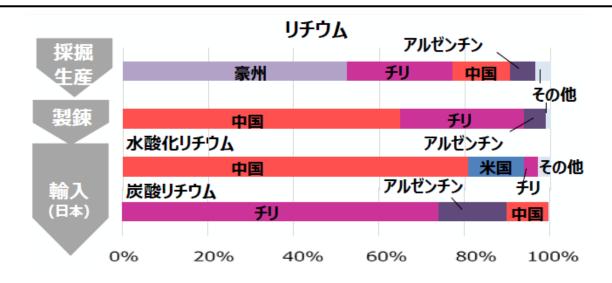
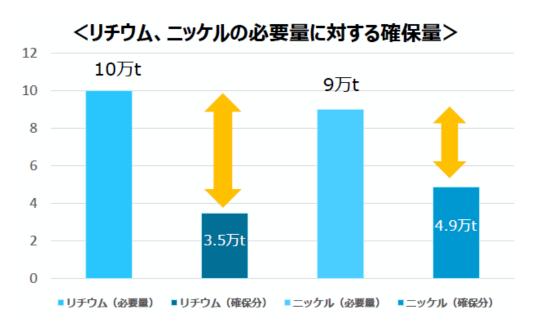


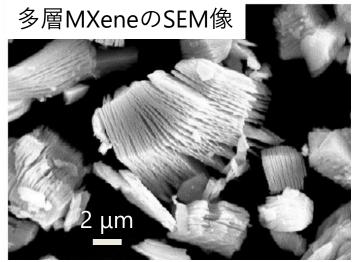
(2G13) Ti₃C₂T_x MXene NMP分散液を導電助剤として 用いたナトリウムイオン電池の特性評価

2025年11月19日


日本材料技研株式会社 大井寛崇 (<u>hirotaka.ooi@jmtc.co.jp</u>), 石井良美

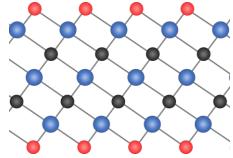

東京都立大学 小菅尚人、金村聖志

ナトリウムイオン電池 (SIB)について


ナトリウムイオン電池開発の必要性⁽¹⁾

- 日本は蓄電池原料のリチウム等の調達を特定国 に依存
- リチウムの主用途は蓄電池の正極材料
- 将来需要に対して確保量が不足している

SIBの開発動向^(2,3)


- 電池材料(電極、導電助剤、バインダー、電解 液等)の探索と高性能化
- 電池材料の組み合わせ最適化
- (1) バッテリーメタルの安定供給確保に向けた方向性, 2025年3月 12日, 経済産業省
- (2) J. Chen, et al., Energy Environ. Mater. 2023, 6, e12633
- (3) K. Deshmukh, et al., *J Mater Sci*, **2025** 60:3609–3633

二次元材料MXeneの概要

結晶構造

- M: 遷移金属
- X: 炭素 or 窒素
- T: 表面官能基(F, O等)

Н												Не					
Li	Ве			发分		成	、 分		成	分		В	С	N	0	F	Ne
Na	Mg											Al	Si	P	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

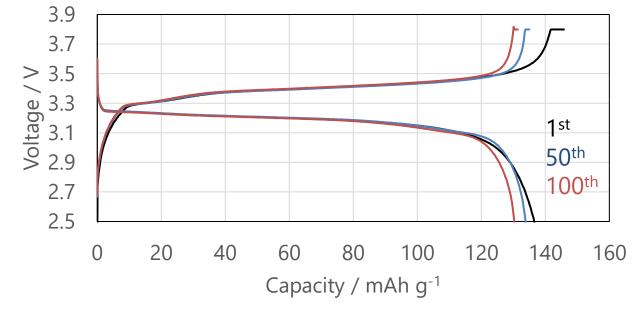
- MXeneは一般式 $M_{n+1}X_nT_x$ で表される、二次元ナノシート形状の遷移金属炭化物あるいは窒化物の総称。 $^{(1)}$ Mは金属、Xは炭素または窒素、Tは酸素やフッ素等の表面官能基。
- シートがアコーディオン状に積層した多層MXene、薄いシートに剥離された剥離MXeneの形態がある。
- 元素の組み合わせで50種類以上のバリエーション。
- Ti₃C₂T_x MXene:高導電性(24,000 S/cm⁽²⁾)、高分散性。
- MXene/樹脂複合材料についても0.05 ~ 6.9 vol%と低い パーコレーション閾値が報告されている。⁽³⁾
- 応用例:蓄電池やキャパシタの電極材料。透明導電膜。 センサ。触媒。電磁波シールド等。
 - (1) Naguib M., et al., Adv. Mater., 2011, 23, 4248-4253.
 - (2) Ali. S. Zeraati., et al., Nanoscale, 2021, 13, 3572
 - (3) F. Damiri, et al., *Materials* 2022, **15(5)**, 1666

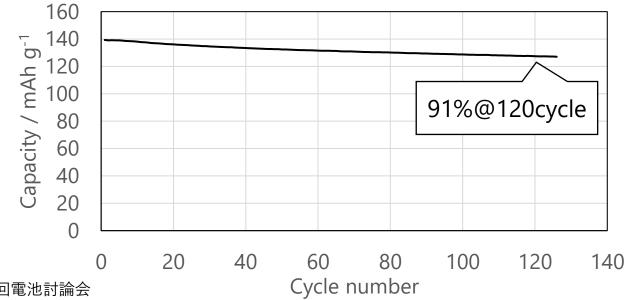
MXeneを導電助剤に用いたリチウムイオン電池

電極組成

LFP: MXene: PVDFw#9100 = 96:2:2

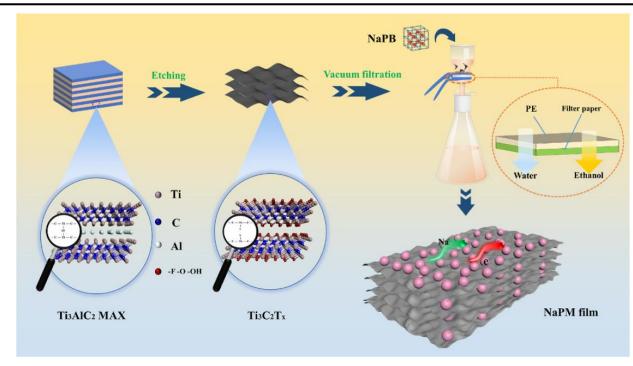
セル構成(リチウムイオン電池)

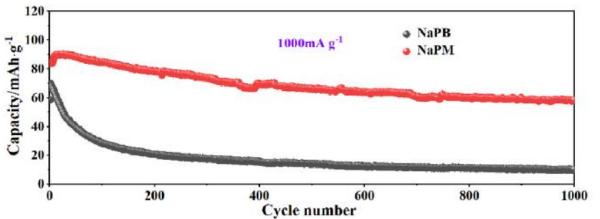

- Cathode: LFP, 1.5 mAh cm⁻²
- Anode: Gr, 2.0 mAh cm⁻²
- Separator: 3DOM Polyimide
- Electrolyte: 0.2M LiPF₆ + 1.3M


ラミネート セル

LiFSA/EC:PC(1:1) + 1%VC + 1%PS

充放電条件


- ➤ CC-CV充電 / CC放電
- カットオフ電位:3.8 V-2.5 V
- ▶ 充放電レート:1C
- 測定温度:30℃



MXeneを用いたナトリウムイオン電池

MXeneへの期待

- MXeneの持つ高い電気導電性や、シート間の隙間 でのイオン伝導
- MXeneの機械的柔軟性
- 活物質の膨張収縮に耐える電極の骨組み機能

MXeneを用いたSIB^(1,2,3)

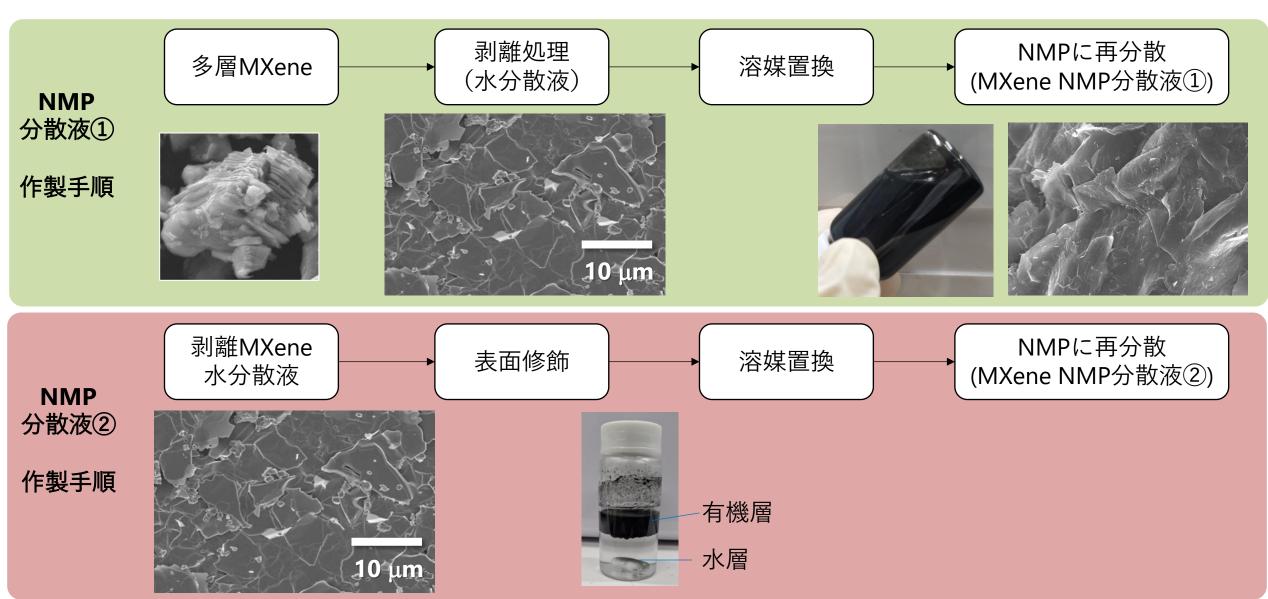
MXeneの層間に活物質 (Na₃V₂(PO₄)₃, NaFeFe(CN)₆
等)をサンドイッチした構造の電極でサイクル特性やレート特性の向上が報告されている

<u>課題</u>

- MXeneは水分散液を使用
- 活物質-MXene複合体の作製に吸引濾過のように 通常の電池製造に用いられないプロセスを利用
- (1) J. Chun, et al., Journal of Power Sources **2023**, 576, 233165
- (2) Y. Chen, et al., *Dalton Trans.*, **2022**, 51, 15425–15435
- (3) J. Yu, et al., Sustainable Materials and Technologies, 2024, 41, e01052

目的

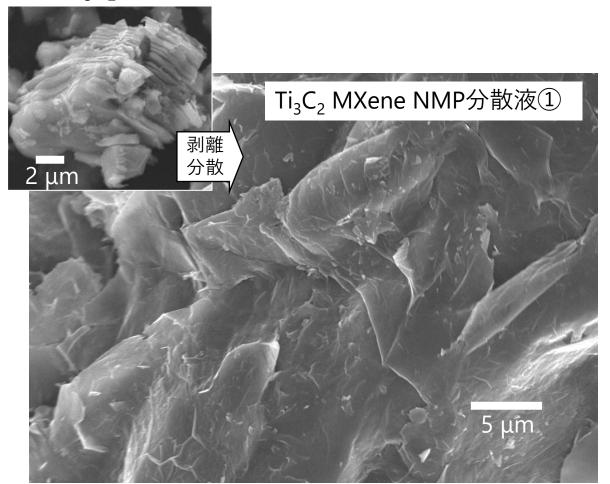

通常の混練・塗工成膜工程に利用可能な導電助剤として、MXene NMP分散液を開発する。


本研究ではMXeneのNMP分散液を作製し、それを用いてSIBを作製する。

<u>実験</u>

- 多層Ti₃C₂T_x MXeneを化学剥離しNMPに分散した分散液の作製
- MXeneを導電助剤とするSIBの評価

Ti₃C₂T_x MXene分散液の作製

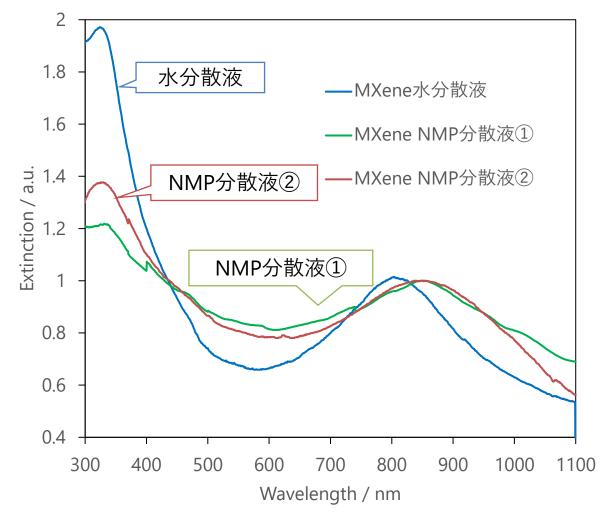


2025年11月19日

第66回電池討論会

Ti₃C₂T_x MXene分散液の物性(SEM)

多層Ti₃C₂ MXene



	多層Ti ₃ C ₂ MXene	Ti ₃ C ₂ MXene NMP分散液①	Ti ₃ C ₂ MXene NMP分散液②
濃度 / %	-	5.8	3.9
形状	アコーディ オン状	シート状	シート状
導電率* / S/cm	-	~40	~60
粒径 (d50) / μm	7.4	12	_
BET比表面 積 / m²/g	7	12	_
紫外可視 吸光スペ クトル	平坦な吸光 特性	300nm, 800nm付近に 弱いピーク	300nm, 800nm 付近に弱い ピーク

^{*} 分散液を凝集後にろ過して得られたろ膜の導電率を測定

Ti₃C₂T_x MXene分散液の物性(消失スペクトル)

	多層Ti ₃ C ₂ MXene	Ti ₃ C ₂ MXene NMP分散液①	Ti ₃ C ₂ MXene NMP分散液②		
濃度 / %	-	5.8	3.9		
形状	アコーディ オン状	シート状	シート状		
導電率* / S/cm	-	~40	~60		
粒径 (d50) / μm	7.4	12	_		
BET比表面 積 / m²/g	7	12	_		
紫外可視 吸光スペ クトル	平坦な吸光 特性	300nm, 800nm付近に 弱いピーク	300nm, 800nm 付近に弱い ピーク		

^{*} 分散液をろ過して得られた膜の導電率を測定

2025年11月19日 第66回電池討論会

Na₃V₂(PO₄)₃ (NVP) 正極作製方法

スラリー作製手順①

NVP粉を湿式ボールミ ル、乾燥

 \downarrow

NVP粉砕粉とMXene NMP分散液を混合

1

超音波分散・混練

 \downarrow

PVDF NMP溶液添加

1

超音波分散・混練

NVPスラリー

電極・電池作製手順

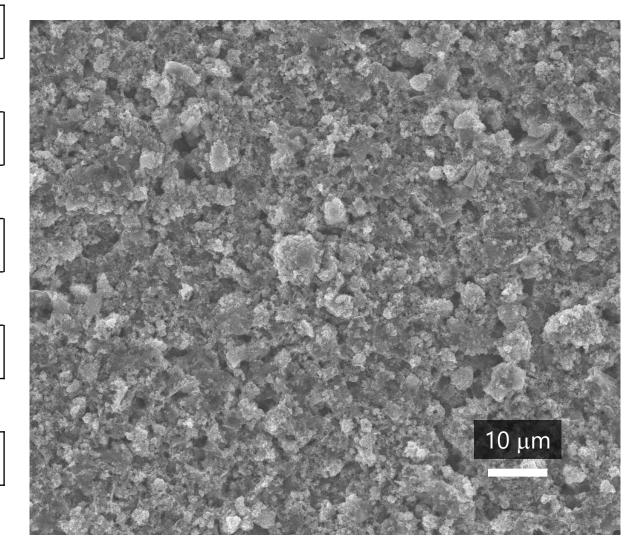
塗布

 \downarrow

乾燥

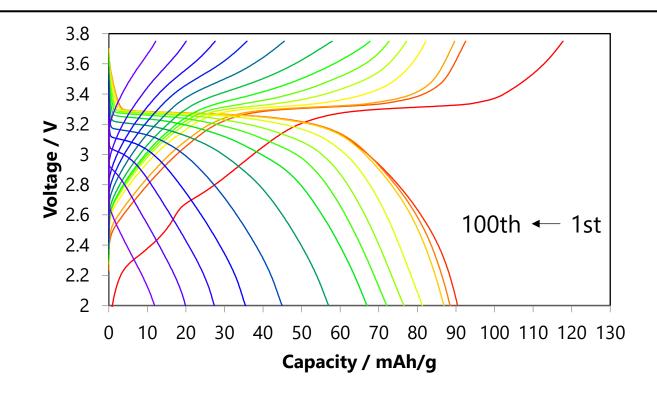
1

プレス


 \downarrow

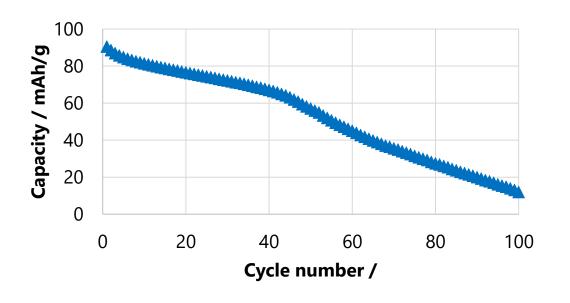
打ち抜き

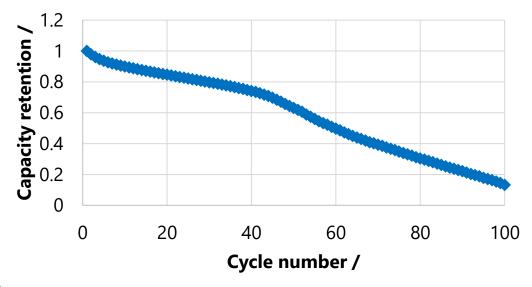
1


コインセル組み立て

電極表面SEM像

NVP-MXene正極SIBの充放電特性


(容量2.9 mAh)


負極:ハードカーボン (容量2.9 mAh)

電解液: 1M NaPF₆+2%FEC, EC:DMC (1:1)

電流密度:0.1C

温度:30℃ コインセル

結果

- MXene NMP分散液を作製した。表面修飾によりMXeneと溶媒の親和性を調整することに成功した。
- NVPとMXene NMP分散液, PVDFを混練・塗工した正極を用いてSIBを作製した。
- 作製した正極は91 mAh/gの初期放電容量を示した。
- 高電位において大きな電流が観測され、これにより劣化が進行した。

今後の予定

- 高電位での劣化原因の特定
- 分散性や酸化安定性を向上させたMXene分散液の開発
- MXeneを導電助剤として用いた各種電池の試作

日本材料技研株式会社

Japan Material Technologies Corporation