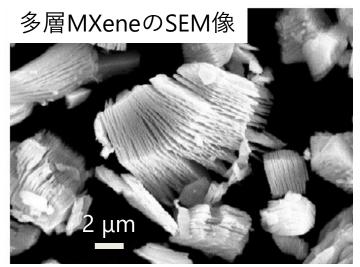
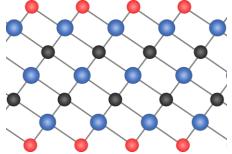


2025年11月20日

日本材料技研株式会社 大井寛崇 (hirotaka.ooi@jmtc.co.jp)


東京都立大学 小菅尚人、金村聖志

東北工業大学 下位法弘


二次元材料MXeneの概要

結晶構造

- M: 遷移金属
- X: 炭素 or 窒素
- T: 表面官能基(F, O等)

Н		M X T							Не								
Li	Ве						В	С	N	0	F	Ne					
Na	Mg											Al	Si	P	S	CI	Ar
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

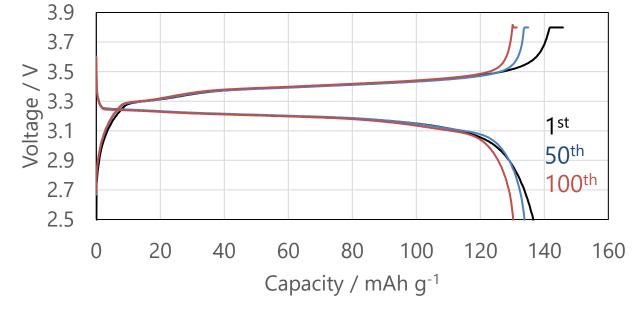
- MXeneは一般式 $M_{n+1}X_nT_x$ で表される、二次元ナノシート形状の遷移金属炭化物あるいは窒化物の総称。 $^{(1)}$ Mは金属、Xは炭素または窒素、Tは酸素やフッ素等の表面官能基。
- シートがアコーディオン状に積層した多層MXene、薄いシートに剥離された剥離MXeneの形態がある。
- 元素の組み合わせで50種類以上のバリエーション。
- Ti₃C₂T_x MXene:高導電性(24,000 S/cm⁽²⁾)、高分散性。
- MXene/樹脂複合材料についても0.05 ~ 6.9 vol%と低い パーコレーション閾値が報告されている。⁽³⁾
- 応用例:蓄電池やキャパシタの電極材料。透明導電膜。 センサ。触媒。電磁波シールド等。
 - (1) Naguib M., et al., Adv. Mater., 2011, 23, 4248-4253.
 - (2) Ali. S. Zeraati., et al., Nanoscale, 2021, 13, 3572
 - (3) F. Damiri, et al., *Materials* 2022, **15(5)**, 1666

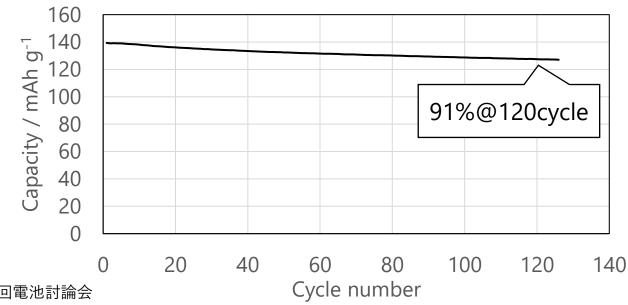
MXeneを導電助剤に用いたリチウムイオン電池

電極組成

LFP: MXene: PVDFw#9100 = 96:2:2

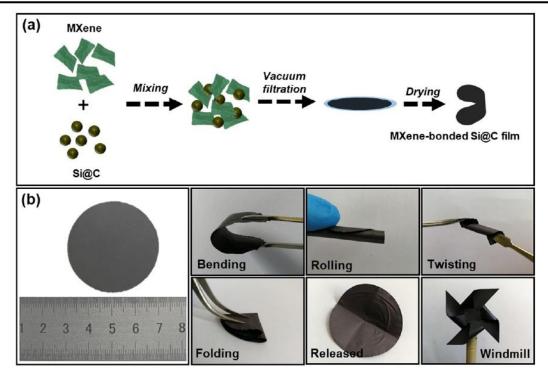
セル構成(リチウムイオン電池)

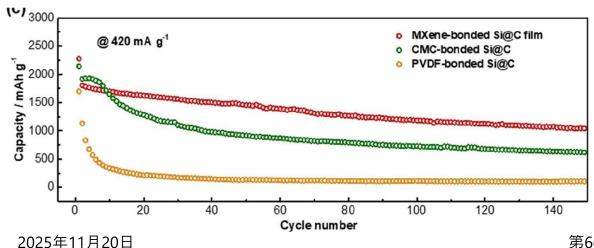

- Cathode: LFP, 1.5 mAh cm⁻²
- Anode: Gr, 2.0 mAh cm⁻²
- Separator: 3DOM Polyimide
- Electrolyte: 0.2M LiPF₆ + 1.3M


ラミネート セル

LiFSA/EC:PC(1:1) + 1%VC + 1%PS

充放電条件


- ➤ CC-CV充電 / CC放電
- カットオフ電位:3.8 V-2.5 V
- ▶ 充放電レート:1C
- 測定温度:30℃



Si負極の課題とMXene-Si複合化

シリコン負極の課題(1)

- 充放電時の大きな体積変動
- 低い導電性

対策例

- 固いバインダー(ポリイミド等)の活用
- シリコンの小粒径化、導電材との複合化

MXene-Si複合化^(2,3)

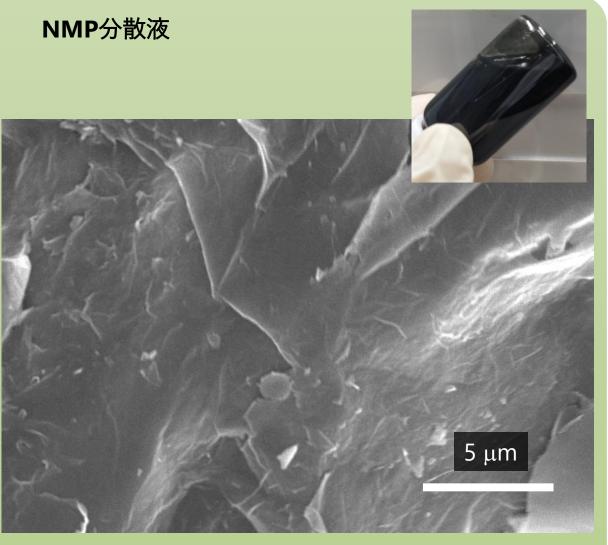
- MXene:高導電性、ナノシート、柔軟などが特徴
- MXeneとSiを複合化して柔軟な電極が作製されている
- 良好なサイクル特性が報告されている

MXeneを一般的な電池製造プロセスへ適用するために

- 剥離MXeneの形態(粉末、NMP分散液)の検討
- Si負極への適用条件の最適化
- (1) Ind. Chem. Mater., **2024**, 2, 226
- (2) P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun, B. Xu, ChemSusChem 2020, 13, 1621.
- (3) Yuan Tian, Yongling An, and Jinkui Feng, ACS Applied Materials & Interfaces, **2019** *11* (10), 10004-10011

第66回電池討論会


<u>目的</u>


混練・塗工成膜プロセスに適用可能な導電助剤として、MXene材料を開発する。 本研究では導電助剤としてMXeneジェットミル粉とNMP分散液を作製し、それらを用 いてシリコン負極を作製しその特性を調べる。

<u>実験</u>

- Ti₃C₂T_x MXeneの準備
 - 多層Ti₃C₂T_x MXeneのジェットミルにより物理的に剥離した粉末を作製
 - 多層Ti₃C₂T_x MXeneを化学剥離しNMPに分散した分散液を作製
- Si-MXene-ポリイミド負極の評価
 - シリコン、MXene、ポリイミドの配合比の検討
 - 剥離方法の異なるMXeneの比較

Ti₃C₂T_x MXene剥離体の作製

Si負極作製方法

スラリー作製手順①

Si粉末 (5 μm), MXene ジェットミル粉を混合

Ţ

ポリイミド溶液を混合

1

混練

スラリー作製手順②

MXene NMP分散液, ポリイミド溶液を混合

 \downarrow

Si粉末 (5 µm)を混合

 \downarrow

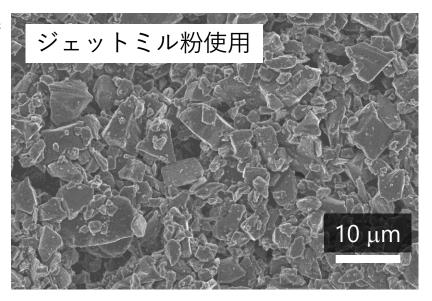
混練

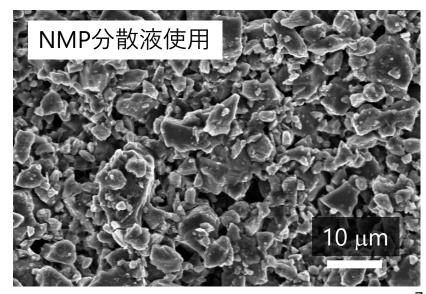
電極作製手順

塗布

乾燥 75 °C, 20 min

焼成 600~650 ℃, 2~3 h


1


プレス

ļ

電池組立

電極表面SEM像

Si負極組成の検討

<u>目的</u>

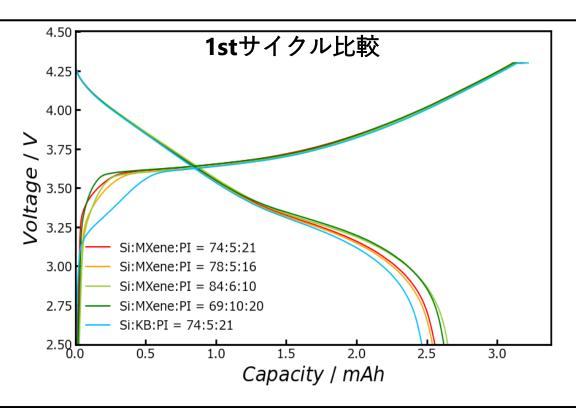
• Si負極組成の最適化を行う

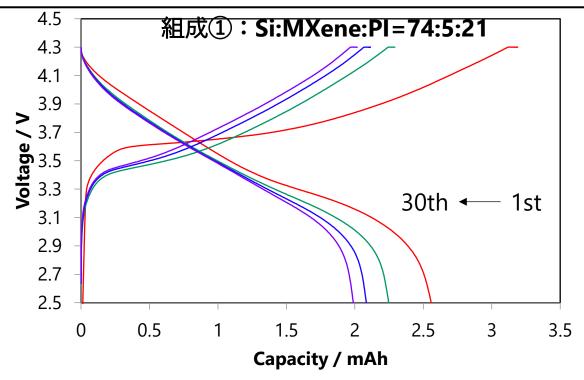
<u>実験</u>

- 下の負極組成表に従い負極を作製した。
 - ※MXene NMP分散液を使用した。
- 各負極とNCM523正極とで作製したLIBの特性を評価した。

負極組成

No.		Si	MXene	PI
1	%	74	5	21
2	%	78	5	16
3	%	84	6	10
4	%	69	10	20
5	%	74	5*	21


^{*}MXeneの代わりにケッチェンブラックを使用


電池設計

項目	内容
正極	NCM523 (2.5 mAh)
負極	Si
電解液	1M LiPF ₆ EC/EMC(3:7)
セルタイプ	ラミセル

Si負極組成の検討

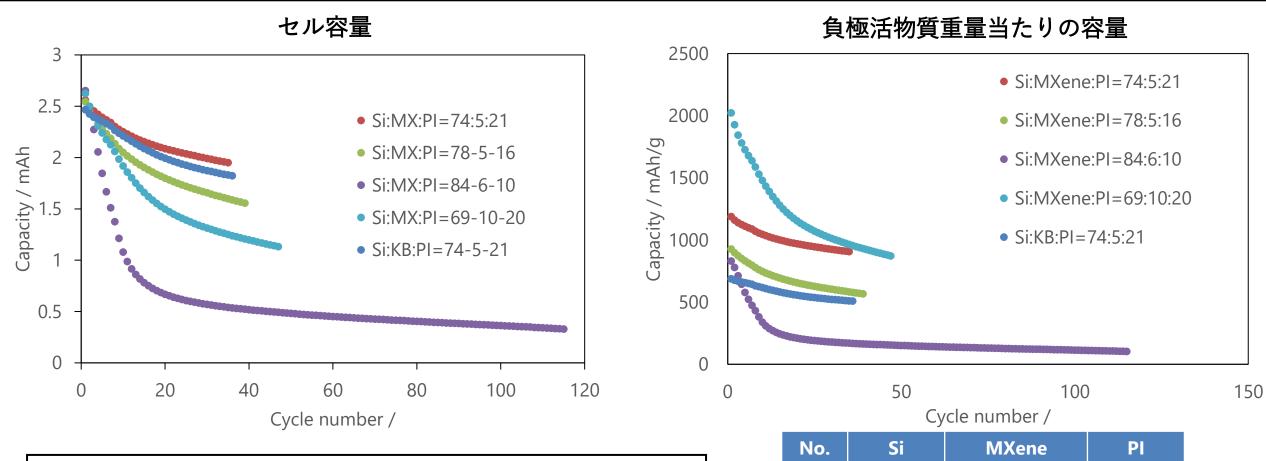
正極: NCM523 (2.5mAh)

負極:Si負極

電解液:1M LiPF₆ EC/EMC(3:7)

測定電圧:2.5-4.3V

レート: 0.10


温度:30℃

セル:ラミセル

No.	Si	MXene	PI
1	74%	5%	21%
2	78%	5%	16%
3	84%	6%	10%
4	69%	10%	20%
5	74%	KB5%*	21%

Si負極組成の検討

正極: NCM523 (2.5mAh)

負極:Si負極

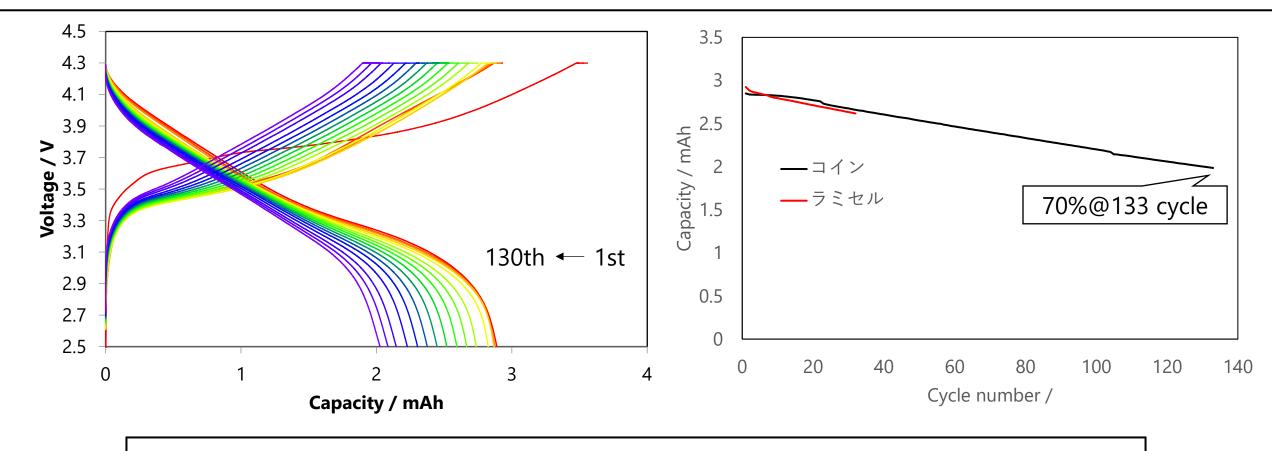
電解液:1M LiPF₆ EC/EMC(3:7)

測定電圧:2.5-4.3V

レート: 0.1C

温度:30℃

セル:ラミセル


No.	Si	MXene	PI
1	74%	5%	21%
2	78%	5%	16%
3	84%	6%	10%
4	69%	10%	20%
5	74%	KB5%*	21%

2025年11月20日

第66回電池討論会

MXeneを用いたSi負極LIB試作

正極:NCM523(2.9mAh)

負極:Si負極(6.78mAh)

組成:Si:MXene (ジェットミル):PI=74:5:21

電解液:1M LiPF₆ EC/EMC(3:7)

測定電圧: 2.5-4.3V

電流值: 0.1C(0.273mA)

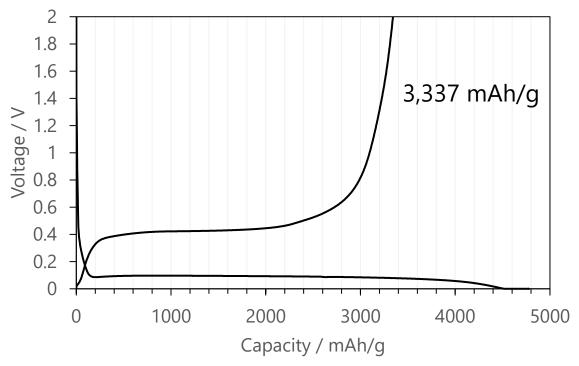
温度:30℃

セル:コインセル、ラミセル

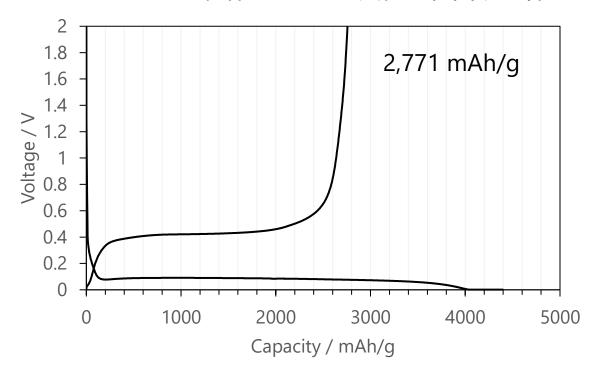
MXene剥離手法による比較

<u>目的</u>

• ジェットミル粉末(物理的剥離)とNMP分散液(化学的剥離)によって 性能に差が出るか検証する


実験

- Li金属を対向電極とした電池を作製し容量を比較
- サイクル特性を比較(正極、負極の容量比を変えて実験)


Si負極の容量確認

NMP分散液MXene-Si負極の初回放電容量

ジェットミル粉体MXene-Si負極の初回放電容量

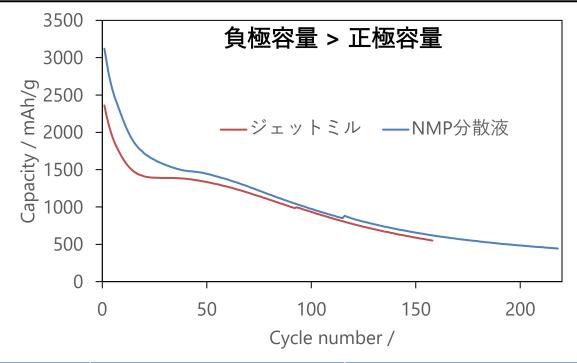
負極:Si電極

組成:Si/MXene/PI=74:5:21

対極:100µm Liメタル

電解液: 1M LiPF₆ EC/EMC(3:7)

充電:CC/0.001V CV(終端0.02mA)

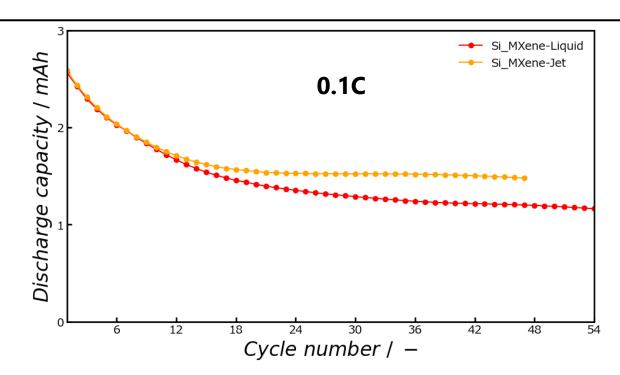

放電:CC(2V Cutoff)

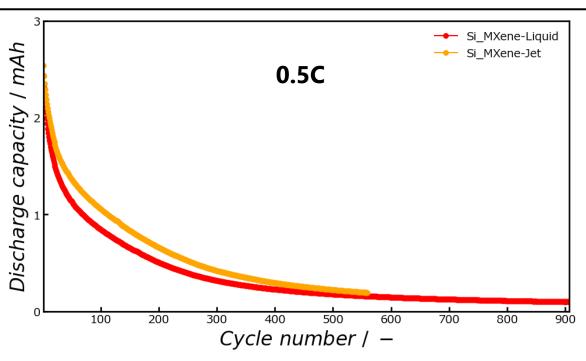
電流值: 0.2mA

コインセル

サイクル特性比較

3	3500 7	各标应导 、工标应导	
3	3000 -	負極容量 >> 正極容量	
h/g	2500 - 2000 - 1500 - 1000 -		
/m/	2000 -		
scity	1500 -	――ジェットミル粉末 ――NMP分散液	
Capa	1000 -		
	500 -		
	0 -		
	(50 100 150	200
		Cycle number /	


	ジェットミル	NMP分散液
正極	NCM523, 2.5 mAh	NCM523, 2.5 mAh
負極	Si/MXene/PI=74:5:21 3.0 mAh	Si/MXene/PI=74:5:21 2.75 mAh
電解液	1M LiPF ₆ EC/EMC(3:7)	1M LiPF ₆ EC/EMC(3:7)


	ジェットミル	NMP分散液
正極	NCM523, 2.9 mAh	NCM523, 2.5 mAh
負極	Si/MXene/PI=74:5:21 6.78 mAh	Si/MXene/PI=74:5:21 6.96 mAh
電解液	1M LiPF ₆ EC/EMC(3:7)	1M LiPF ₆ EC/EMC(3:7)

ラミセル;測定電圧:2.5-4.3V;電流値:0.1C(1C = 2.5mA);温度:30℃

2025年11月20日 第66回電池討論会 14

	ジェットミル	NMP分散液
正極	NCM523, 2.5 mAh	NCM523, 2.5 mAh
負極	Si/MXene/PI=74:5:21 3.0 mAh	Si/MXene/PI=74:5:21 2.75 mAh
電解液	1M LiPF ₆ EC/EMC(3:7)	1M LiPF ₆ EC/EMC(3:7)

ラミセル;測定電圧:2.5-4.3V;電流値:0.1C、0.5C(1C = 2.5mA);温度:30℃

結果

- 物理的手法(ジェットミル)と化学的手法(TMAH)の2通りで剥離MXeneを作製した
- シリコンとポリイミドとMXeneを混錬、塗工成膜しSi負極を作製した
- 作製した負極の容量密度は2770~3330 mAh/gであった
- Si負極組成がSi: MXene: PI = 74:5:21のとき、良好な特性が得られた
- MXeneの物理粉砕品と化学粉砕品は同等の性能であった

今後の計画

- 異なるグレード(粒径違いやSiO等)のシリコン系活物質との複合化検討
- 他の導電材との併用の検討

日本材料技研株式会社

Japan Material Technologies Corporation