電子輸送層にTi₃C₂T_x MXeneを用いた 薄膜フレキシブル 有機フォトダイオードの開発

講演番号: 19p-A31-3 〇佐々木 光生¹,大井 寛崇²,横田 知之¹ 東京大学院工学系研究科電気系工学専攻¹,日本材料技研²

有機フォ トディテクタ

有機フォトダイオードの 基本構造

・ドナー: PMDPP3T

フレキシブルなX線検出器_[3]

[1] Xiong, Sixing, et al. Journal of Mater Chem. 2016, 4,1414.
[2] Y.Matsuo, "材料科学の基礎 第4号 有機薄膜太陽の基礎"
[3] G. H. Gelinck, et al., Org. Electron. 2013, 14, 2602.

フレキシブル性、低コスト、軽量
 ⇒ウェアラブルなセンサーへの応用が期待

[1] Wang, Yazhong, et al. *Materials Horizons*. 2022, **9.1**, 220-251.
[2] Arora, Himani, et al. *Applied Physics Letters*. 2015, **106.14**.

Energy

[3] Huang, Jianfei, et al. ACS nano. 2021, 15.1, 1753-1763.
[4] Lim, Chang-Jin, et al. Organic Electronics. 2019, 65, 100-109.

MXene (輸送層)

$M_{n+1}X_nT_x$:遷移金属炭化物/窒化物+表面官能基

MXeneのSEM写真[1]

MXeneの透明電極

• 高い透過率・導電率、官能基による仕事関数の可変性

[1] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, *Chem.Mater.* 2017, 29, 7633.
[2] Hantanasirisakul, Kanit, et al. *Advanced Electronic Materials*. 2016, 2, 1600050.

溶液プロセスで成膜したMXeneを輸送層として用いた 薄膜フレキシブル有機フォトダイオードの評価を行う

有機フォトダイオードに応用 デバイス写真

<u>先行研究[1]</u>

MXeneインク

多層Ti₃C₂ MXene

Ti₃C₂ MXene水分散液

	多層	水分散液
濃度 / %	-	0.3 ~ 0.5
形状	アコーディオン状	シート状
粒径 (d50) /μm	7.4	5.5

500rpmのMXene膜では 6.1 kΩ /sq, 76.7% (at 600 nm)

MXene膜の曲げ試験(機械的耐久性)

デバイス構造・作製手法

- 成膜条件
- PEDOT:PSS : 3000rpm, 60s \rightarrow 140°C, 10mins
 - PMDPP3T:PC₆₁BM: 300rpm, 180s \rightarrow 4000rpm, 10s
 - MXene: 1000rpm, 60s \rightarrow 4000rpm, 10s \rightarrow 100°C, 10mins @N₂ air

フレキシブル基板EQE: 56.1% at 850 nm (ガラス基板65.1%)

フレキシブルOPDの曲げ特性

曲げ半径0.5 mmの曲げ後も動作(光電流9%減、暗電流6%増)

フレキシブルOPDの機械的耐久性

1000回の曲げ後も動作(光電流11%減、暗電流35%増)

まとめ

- MXeneインクを輸送層として用いたフレキシブル
 OPDの作製・評価を行った
 - > EQE: 56.1% at 850 nm (ガラス基板は65.1%)
 - ▶ 半径0.5 mmの曲げでも安定に動作
 - > 1000回の曲げ(曲げ半径3 mm)でも安定に動作

室温プロセスによるMXene OPDの評価

[謝辞] 本研究は日本材料技研との共同研究で行っております。