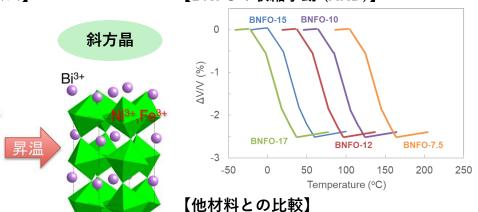
負熱膨張材料 BNFO

~ 熱膨張を抑制する無機材料 ~

- ◆ 負の熱膨張を示す酸化物材料「BiNi_{1-x}Fe_xO₃(ビスマス・ニッケル・鉄酸化物)」
- ◆ 相転移温度で巨大な負の線膨張率 (-187 ppm/K)を示す
- ◆ 精密成型部品、接着剤、導電性ペースト等の複合材料の熱膨張を抑制可能

製品概要

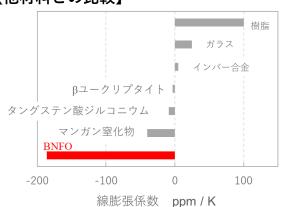
PRODUCT OVERVIEW BNFO ($BiNi_{1-x}Fe_xO_3$) は、ペロブスカイト構造を有する相転移材料であり、特定の温度領域で結晶構造の相転移による負熱膨張性を示します。


【BNFOの負熱膨張メカニズム】

Bi3+

三斜晶

Bi5+


【BNFOの収縮挙動 (XRD)】

導電性 小 大

熱伝導性・小・大

製品の特徴

PRODUCT FEATURE

巨大な負熱膨張率

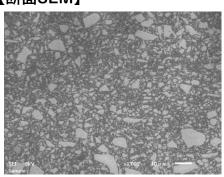
-187 ppm/K

動作温度域の異なる 製品をラインナップ 0~160°C程度

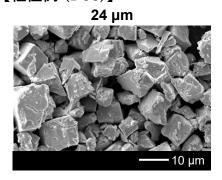
材料複合化により 熱膨張を抑制可能

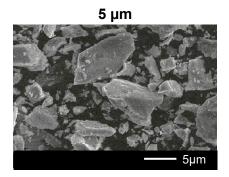
お問い合わせ先

樹脂コンポジット化による熱膨張抑制効果


【コンポジットのTMA測定】

【コンポジット外観】




【断面SEM】

BNFOサンプル物性例

【粒径例 (D50)】

【物性例】

ビッカース硬さ*	2.5 [GPa]
比重*	9.04
電気抵抗 (RT/100°C)*	5.04 / 0.03 [Ω·cm]
比誘電率/誘電正接(1 MHz)*	1060 / 0.05
比誘電率/誘電正接 (10 MHz)*	118 /1.25
比誘電率/誘電正接 (5.8 GHz)**	71.6 / 0.19

本資料のデータは参考値です。

*BNFO-15焼結体の参考値です **BNFO-10フィラーの参考値です

お問い合わせ先